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Design optimization of space structures considering geometrical and material nonlinearities is achieved by continuous 
virtual sub population (CVSP) evolutionary algorithm. The design variables are cross-sectional areas of the elements. 
Design constraints include structural and stability constraints. Tension and compression stresses are limited to their critical 
values and nodal displacements are restricted to their allowable values. The overall loss of stability is also checked during 
the optimization process and some restrictions on design variable are considered. The test examples presented 
demonstrate that further reduction is possible in the structural weight by including the nonlinear behavior in the optimal 
design process. 
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1. Introduction 
 
Nowadays, space structures are widely used because 

of their efficiency and numerous advantages comparing 
with conventional form of structures. These structures are 
being seen in many constructions such as, exhibition halls, 
stadiums, bridges, pools and aircraft hangars and so on. 
Therefore, sufficient attention must be considered for 
systematic design of these structures. For this purpose, 
design of space structures can be conveniently achieved by 
employing optimization techniques. It is obvious that an 
optimal design has a great influence on the economy and 
safety of all the structures. In recent years, much progress 
has been made in optimum design of space structures by 
considering linear behavior [1-3]. It is observed that some 
trusses appear nonlinear behavior even in usual range of 
loading [4, 5]. Therefore, neglecting of nonlinear effects in 
design optimization of these structures may be led to 
uneconomic design.  

In this study, design of space structures for optimal 
weight considering geometrical and material nonlinear 
behavior is presented using a continuous evolutionary 
algorithm. All of the optimization problems have two main 
phases: analysis phase and optimization phase. We employ 
ANSYS (nonlinear finite element program) in analysis 
phase. In the optimization phase, we utilize virtual sub 
population (VSP) algorithm [6]. The design variables are 
cross sectional areas of the structures. The design 
constraints involved here are structural, stability and 
geometrical constraints. Nodal displacements are restricted 
to its upper bounds. Tension and compression axial 
stresses are limited to yield and buckling stresses, 
respectively. Loss of overall stability of structure is also 
checked throughout the optimization process.  

Some illustrative examples are presented to 
demonstrate the effectiveness of proposed method for 
optimum design of space structures. The numerical results 
reveal that taking into account nonlinear behavior of 
structures affects the safety and economy of the design. 

2. Theoretical background of nonlinear  
    analysis 
 
In a linear static analysis we implicitly assume that the 

deflections and strains are very small and the stresses are 
smaller than the material yield stresses. Consequently, the 
stiffness can be considered to remain constant (i.e., 
independent of the displacements and forces) and the finite 
element equilibrium equations are linear. 
 

}]{[}{ δK=P                                (1) 
 
where {P}, [K], and }{δ are the external load vector, 
stiffness matrix and nodal displacements vector, 
respectively. 

This linearity implies that any increase or decrease in 
the load will produce proportional increase or decrease in 
displacements, strains and stresses. But we know that, in 
many structures, at or near failure (ultimate) loads, the 
deflections and the stresses do not change proportionately 
with the loads. Either the stresses are so high that they no 
longer obey Hooke’s law (linear stress to strain 
relationship) or else there are such large deflections that 
the compatibility equations (strain to displacement 
relationship) cease to be linear. These two conditions are 
called material nonlinearity and geometric nonlinearity, 
respectively.  

In this study, a finite elements model based on 
geometrical and material nonlinear analysis of space 
structures including plasticity, and large deflection 
capabilities is presented by ANSYS [7]. In this model a 3-
D truss element called link8 is used. The 3-D truss element 
is a uniaxial tension-compression element with three 
degrees of freedom at each node. In elasto-plastic analysis 
the von mises yield function is used as yield criterion. In a 
stress state where only one direct stress, say σxx, is 
nonzero, the onset of plasticity is defined by the condition 
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σxx= σy. Flow rule in this model is associative and the 
hardening rule is multilinear isotropic hardening [7].  

 
 
3. Steps in nonlinear analysis combining  
     geometrical and material nonlinearities 
 
Here, instead of the linear strain-displacement 

relation, the nonlinear Green’s strain [8] is used: 
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where Gε  is the nonlinear Green’s strain, nl and 0l  are 
the length of space truss element after and before the 
deflection, respectively. 

Since Green’s strains are used, the stresses in an 
analysis, including geometric nonlinearity, will be 2nd 
Piola-Kirchoff [8] stresses. 

Since the strains are nonlinear functions of the 
displacements or when the stresses reach values exceeding 
the yield stresses of the material, the stress to strain 
relationship is nonlinear. In these cases, the stiffness is 
dependent on the displacements and the straines. 
Obviously, the solution of the displacements can not be 
obtained in a single step. Instead, the analysis is carried 
out by the incremental method [8] combined with some 
iterative equilibrium corrections at every step.  

In this work, using the Newton-Raphson method of 
solution, the following steps are used: 
1. Form tangent stiffness matrix [Kt] with the latest 
values of displacements and stresses. This involves 
calculating and using the elasto-plastic material stiffness 
matrix, [Dep], for those points which are plastic. Use the 
linear material stiffness matrix, [D] for points remaining 
elastic or unloading. 
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To start the process in iteration 1 of load step 1, the 

linear stiffness matrix is used, assuming that stresses and 
strains obey Hooke's law. 
2. Solve the incremental displacements: 

                                                     
}{}{Δ][}{Δ 1 ψδ += − PtK                         (4) 

 
where }{ΔP is part of the load vector to be applied at the 
current increment (to be used only at the first iteration of a 
load step) and }{ψ is residual force vector. Use zero 
values for }{ψ at the first iteration of the first load step. 
3. Add the incremental/corrective displacements 
{ δΔ } to the total displacements {δ }: 
 

}{Δ}{}{ δδδ +=                          (5) 
 

4. Calculate strains using the nonlinear Green’s 
strain based on the latest estimate of the displacements and 
the incremental strains {dε}. 
5. Calculate total stresses, using the linear elastic 
stress strain relation: 
 

 }d]{[}{}{ εσσ D+=                         (6) 
 

6. Check to see if the estimated stresses are within 
the elastic limit: 
If {σ} > σy, current point is plastic GO TO step 7. 
If f(σ) < σy, current point is elastic GO TO step 8. 
7. Calculate the elastic part {εee} and the plastic part 
{εep} of the incremental strains. The plastic strain 
increment is computed using the normality flow rule [9].  
8. Calculate contributions of the current Gauss point 
to the element internal forces {f}i: 

vσf
ei d}{][}{ T∫= B                           (7) 

Repeat steps 4 through 6 for all the Gauss points of all 
elements. 
9. Calculate residual forces as: 
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where the vector {F} contains the (cumulative) external 
forces and includes any reactive forces at supports. 
Incorrect assumptions in displacements will, in general, 
result in the vector {ψ} being nonzero. The residual force 
{ψ} can be visualized as additional nodal forces required 
bringing the assumed displacements into nodal 
equilibrium. 
10. If || ψ || > CTOL, the current increment has not 
converged. Apply equilibrium correction by repeating 
steps 1 through 9. 

The convergence tolerance CTOL is defined as the 
ratio between the length of the residual force vector and 
the total (accumulated) external force vector acting at the 
current step. It can be set by the user in the set up mode. 
Typical value of CTOL is 0.01 
(1% of the external forces acting at any given step). 
11. If || ψ || <CTOL, current increment has 
converged. Go to step 12. 
12. If all the load steps are done, stop. Otherwise, set 
{ΔP} = incremental loads to be applied at the next 
increment and repeat steps 1 through 9. 

To increase the speed and accuracy of the nonlinear 
analysis, first, the applied loads are segmented into some 
loads termed supsteps and then, in each supstep Newton-
Raphson method is used. 

 
4. Optimum design problem formulation 
 
It is shown that consideration of nonlinear behavior in 

the optimum design of structures not only provides more 
realistic results, but also produces lighter structures [4, 5]. 
Nonlinear structural behavior arises from a number of 
causes, which can be grouped into geometrical and 
material nonlinearity. If a structure experiences large 
deformations, its changing geometric conFiguration can 
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cause the structure to respond nonlinearly. Nonlinear 
stress-strain relationships are a common cause of material 
nonlinear behavior. One of the main factors that can 
influence a material’s stress-strain properties is load 
history in elasto-plastic response. 

The optimum design problem of nonlinear space 
structures can be expressed as follows: 

                                        

mqXg
Xw
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)( :Minimize

=≤
          (9) 

 
where X is the vector of design variables with some 
unknowns, gq are the m inequality constrains including the 
side constraints. Also, w(X) represents the objective 
function that should be minimized. 
 

4.1. Optimization Algorithm 
 
In structural optimization problems, where the 

objective function and the constraints are highly non-linear 
functions of the design variables, the computational effort 
spent in gradient calculations required by the mathematical 
programming algorithms is usually large. In recent years, 
it was found that probabilistic search algorithms are 
computationally efficient even if greater number of 
optimization cycles is needed to reach the optimum. 
Furthermore, probabilistic methodologies were found to be 
more robust in finding the global optima, due to their 
random search, whereas mathematical programming 
algorithms may be trapped into local optima. Many 
successful applications of evolutionary algorithms are 
reported in the related literatures [10-15].  

In the present study, to obtain the optimum design of 
space structures, continuous genetic algorithm based on 
VSP method is used. Continuous optimization method, 
CVSP, require less computer effort comparing with the 
discrete, VSP, method.  

 
4.2. Design variables 
 
In this study, the design variables are cross sectional 

areas of the space structures as: 
 

},...,,...,{ 1 ngn xxxX =                            (10) 
 

where xn is design area of members belonging to group n 
and ng is the total number of groups in the structures. 
 
 

4.3. Objective function 
 
The objective function is weight of structure which 

can be expressed as: 
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where γi , li  are the weight density and length of member i; 
nm is the number of members in group n. 
 

4.4. Design constraints 
 
Design constraints are divided into some groups 

including the structural, stability and geometrical 
constraints. The structural constraints are defined as: 

 
pjδδXg jujdj ,...,1      0)( =≤−=             (12)   

 
nekσσXg kcrksk ,...,1   0)( =≤−=            (13) 

 
δj is the displacement of  joint j and δju is its upper bound; 
p is the number of restricted displacement. σk is the stress 
of member k and σkcr is its critical value; ne is the total 
number of members. The critical stress for a tension 
member is simply taken as the yield stress, σy, of steel. The 
critical stress of compression member is obtained 
according to buckling stress as: 

 
ccr CλλEπσ >=               22                    (14) 

 
ccycr CλCλσσ <=     )2-1( 22                    (15) 

 
where λ is the slenderness ratio of the member and 

yc σEπC 22= .  

The constraint ensuring the stability of the space 
structure during the optimization process is as: 

 
  0)( ≤−= uals ffXg                     (16) 

 
where fa is applied load factor and fu is ultimate load factor 
determined using nonlinear analysis.  

The geometric constrain is defined to limit design 
variable as: 

ng,...,n, xxXg nnl
l
gn 10)( =≤−=         (17) 

 
   ng,...,n     ,xxXg nun

u
gn 10)( =≤−=        (18) 

 
where xnl and xnu are lower and upper bound on design 
variable xn. 
 
 

5. Numerical examples 
 
The design algorithm presented is used to optimize 

two space structures where geometrical and material 
nonlinearity take into account. Optimum solutions 
obtained by ordinary GA and CVSP methods are 
compared with those of other researchers that considered 
linear and nonlinear behavior in optimum design of space 
structures [4, 5].  

 
5.1. 25-bar space truss 
 
The design of the space truss depicted in Fig. 1 is 

considered as the first example. As shown in Fig.1 the 
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cross sectional areas of members are collected into eight 
groups. The loading are given in Table 3.  

 

 
 

Fig. 1. 25 bar space truss. 
  

The displacements of joint 1 and 2 in the x and y 
directions are restricted to 10 mm. The yield stress and 
modulus of elasticity are 240 N/mm2 and 207 kN/mm2, 
respectively. Minimum and maximum size constraints are 
chosen to be 200 mm2 and 2000 mm2, respectively. 
Optimum solutions obtained by this work and those of 
obtained by Saka [4] are compared in Table 4. 

 
Table 3. 25-bar space truss loading. 

 
Loading (kN) Joint No. 

x y z 
1 80 120 30 
2 60 100 30 
3 30     0   0 
6 30     0   0 

 
Table 4. Comparison of optimum solutions obtained by  

various methods. 
 

Optimum Design (mm) 
Linear behavior Nonlinear behaviorists 

Variable 
No. 

Saka and Ulker 
[4] & this work 

Saka 
and 

Ulker 
[4]  

GA CVSP 

1   200   200   369.74 398 
2 1640   750 1151.67 678 
3 1568 1312 1003.09 1461 
4   368   200   423.90 205 
5   399   427   285.72 507 
6 1492   380   319.46 349 
7 1496    422   720.06 309 
8 1495 1715 1643.99 1785 

Weight 
(N) 

9035.01 4973.7 5453.20 4964.7 

 
As shown, nonlinear behavior consideration can 

significantly reduce the total weight of the structure. It is 
also observed that solution found by CVSP method is 
more economical than that attained by GA. 

5.2. 200-bar double layer grid 
 
The space structure, shown in Fig. 2, has 200 bars. 

Design optimization of this structure was carried out in ref 
[1] involving linear behavior. In the present work, the 
structure is optimized by including nonlinear behavior. 
The cross sectional areas of members are collected into 
three groups. One of the groups contains the bottom layer 
members. Diagonal are grouped together as another one, 
and top layer members are collected in the third group. 
Simple supports are considered on joints 1, 6, 31 and 36. 
The top layer joints are subjected to vertical loading of 
13.5 kN and the vertical displacements of these joints are 
restricted to 20 mm. The yield stress and modulus of 
elasticity are 240 N/mm2 and 210kN/mm2, respectively. 
Minimum and maximum size constraints are chosen to be 
200 mm2 and 2000 mm2, respectively.  

 

 
Fig. 2. 200-bar double layer grid. 

 
  

Optimum solutions obtained by various methods are 
compared in Table 5.  
 
 

Table 5. Comparison of optimum solutions obtained by  
various methods. 

 
Optimum Design (mm) 

Linear behavior Nonlinear 
behaviorists 

Variable 
No. 

Togan and Daloglu [1] & 
this work 

GA CVSP 

1   819.0 320.50 320.50 
2 1552.0 632.33 632.33 
3 1552.0 837.59 557.70 

Weight 
(kN) 

62.869 30.421 23.690 

2.00 m 
2.46 m 2.56 m 

5×3.00 m 

5×
3.

00
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It is observed that the solutions found by considering 
nonlinear behavior are more economical than solution is 
attained by linear behavior and CVSP method can reach to 
better optimum design than ordinary genetic algorithm. 

 
 
6. Conclusions 
 
Optimal design of space structures involving 

geometrical and material nonlinearity is presented. 
Optimization algorithm is continuous VSP (CVSP) 
evolutionary algorithm. In the process of CVSP real values 
of design variables are incorporated in the optimization 
instead of discrete values. Total weight of structures is 
taken as objective function and the design variables are 
cross sectional areas of the structures. The design 
constraints include structural, stability and geometrical 
constraints. Tension and compression axial stresses are 
limited to their critical values and nodal displacements are 
restricted to its upper bounds. Stability constraint is 
defined to prevent from loss of overall stability of 
structure during the optimization process. Some 
illustrative examples are presented to demonstrate the 
effectiveness of proposed method for optimum design of 
space structures. The numerical results reveal that taking 
into account the nonlinear behavior can significantly 
reduce the optimum weight of structures compared with 
those of obtained using linear behavior. 
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